Enhance System Test & Evaluation from development to battlefield via Technology Integration with Maintenance Test and Training

PRESENTOR: JIM SEBOLKA

Washington Institute of Technology

Tel: 703-941-1999

Email: sebolka@usa.net

AGENDA

- **→**Impetus
- **→**Technology Overview
- **→**Plan and recommendation

Enhance System Test & Evaluation from development to battlefield via Technology Integration with Maintenance Test and Training

Dr. Li Pi Su

Advanced Technology Office The U.S. Army TMDE Activity U.S. Army Aviation and Missile Command

lipi.su@redstone.army.mil DSN: 788-8552 Com: 256-

842-8552

Ms. Mary Nolan

Giordano Automation Corp. 21 White Deer Plaza Sparta, NJ 07871

mary@giordano.com

(706) 569-6546

Ms.Carol Holcomb

Subsystem Test & Analysis
Redstone Technical Test Ctr.
U.S. Army Test & Evaluation
Command
cholcomb@RTTC.
redstone.army.mil
(256) 876-2054

USATA Advanced Technology Office

- □Over ten years of successful R&D programs aimed at the toughest, but highest leverage segments of maintenance technologies:
 - →Integrated diagnostics -- development tool
 - ✓ Design for diagnoseability and testability
 - ✓ Reduced TPS cost and runtime
 - →Prognostics framework -- system design tool
- □ Underlying "Core Technology" advancements support Test and Diagnostic Technology

Developmental and Operational Tests & Evaluations Issues

□ No integrated system-level developmental and operational test and evaluation mechanisms
 □ No planned database to track the developmental test and evaluation data to support operational test and evaluation
 □ No onboard system capable of evaluating the health of weapon systems for battlefield decisions and logistics planning
 □ High no evidence of failure (NEOF), maintenance training cost, and maintenance costs
 □ Traceability from performance parameters to end design is not structured

DT/OT Problems for Military Systems are Generic Across the Services and Systemic of the Way We DO BUSINESS. Major Changes are Required!

System Battle Damage Assessment (BDA), Logistics, & Training Issues

BDAR Problems for Military Systems are Generic Across the Services and Systemic of the Way We DO BUSINESS. Major Changes are Required!

Maintenance Test Issues/problems

No integrated system diagnostics/prognostics
No onboard system capable of evaluating the
health of weapon systems for battlefield decisions
and logistics planning
High no evidence of failure (NEOF), maintenance
training cost, and maintenance costs
High mean time to repair and low system mission
readiness
Time consuming troubleshooting and inadequate
IETMs and high cost TPS development
Time consuming parts ordering and high error rate

Maintenance Test Issues for Military Systems are Generic Across the Services and Systemic of the Way We DO BUSINESS. Major Changes are Required!

The Time for Dramatic Changes is NOW!!

□ Software Technology has been revolutionized in the past decade:

 Object Oriented Programming, Client-Server Software, True Open Architecture, XML, Integrated Data Environments, Platform Independent Software, Internet and Intranet communications, Visual Programming, OLE, DLL, Active-X, etc.
 □ Most military software is antiquated, and will be updated over the next decade to take advantage of these advances
 □ OPPORTUNITY EXISTS NOW TO CHANGE FUNDAMENTAL BUSINESS CONCEPTS
 □ Unfortunately most automation programs are automating the same technology/business process

The OPPORTUNITY for Re-Defining Fundamental practices must not be MISSED!

The time and the state of technology may be right for T&E, Logistics, and Training communities to stop going in different directions...

...and converge on a
common,
information-driven
approach to test
requirements

Test Domain Does System/Item Meet Specified Performance Requirements?

Test & Evaluation

Uncertain I tem Ever Performed Properly

- Will system perform as specified?
- •If not, Why
 not?
- ·How do I fix
 it?

•Engineering
Analysis of Design
•Test of Lower
Level Performance
Parameters
•Delineation and
Synthesis of
Functional
Elements
•Measurement
Science: sensors &
instrumentation,
Data Acquisition
•Early designbased simulations

Maintenance Test

Certain I tem Once Performed Properly

- Does system now perform as specified?
- •If not, Why
 not?
- •How do I fix it?

Combine T&E and Training, with the Maintenance test diagnostic knowledge database to provide an <u>integrated</u> field training package for BDAR and enhance Logistics Supportability through Interoperability.

COMMON TEST DOMAIN FOR MAINTENANCE AND T&E

☐ Engineering Analysis of system's design
 ☐ Test of lower level performance parameters
 ☐ Measurement Science: Sensors, instrumentation, and data acquisition
 ☐ Early design -based simulations
 ☐ Delineation and synthesis of functional elements
 ☐ Traceability from performance parameters to end design to being supported in the field

How do we more effectively and efficiently leverage off these common elements?

Imagine, if you will...

...A design-based model...

... that correlates design elements to system functions to mission performance...

... and includes all test/diagnostic characteristics: testability, performance monitoring,

And gives us the capability to track performance over time....

... and trace performance issues to fundamental "principals of design" ...

...and, at the same time, generates the deployed diagnostic/prognostic and health management capability...

... and makes use of all T&E activities to mature this test, diagnostic and prognostic capability....

... to ensure that the fielded product meets its mission, performance, and supportability requirements.

Today's technology supports this capability

Breaking the Wall Between Development and Maintenance

A Comprehensive Integrated Support Capability

Automated Parts Ordering

Eliminate Cumbersome and Error-Prone Paperwork

Integrated Personalized Training

Automatically adapts IETM material according to skill level!

Skills & Readiness Assessment

Automatically assesses and tracks user's skill levels

Dynamic Model-Based

Reasoning Eliminates troubleshooting fault trees!

Serial Number Tracking

For Total Asses Visibility

Battle Damage Assessment & Repair

Fully Integrated with Maintenance Test and Technical Information

Maintenance History

Continually Improve Support Posture

Integrated
Measurement
Instrumentation

Open Architecture Allows for Integration of Any Instrumentation

COST SAVINGS

- ✓ Test Program Set diagnostic flow charts replaced by Reasoner
 - \$\$ 10 to 1 labor savings \$\$
- √ Fault simulator reduced Verification and Validation costs
 \$\$ 50 to 1 labor savings \$\$\$
- ✓IETM troubleshooting procedures replaced by Reasoner \$\$ 10 to 1 labor savings \$\$
- ✓ Embedded Diagnostics Reasoner replaced hard coded fault localization procedures & BIT Codes
 - \$\$ 10 to 1 overall program savings \$\$
- ✓ Training tool development cost and training cost will be reduced

THE BOTTOM LINE

ORDER OF MAGNITUDE DEVELOPMENT COST SAVINGS & MORE EFFECTIVE FIELDED CAPABILITY!!

MAINTENANCE TEST CHANGES FOCUS

NEW DIAGNOSTIC TECHNOLOGY REDUCES TEST REQUIREMENTS

▶ UUT Fault Tree (Brute Force): Computer controlled test systems and simulated UUT operational environment to compare outputs and signals VS

- **▶** Information-driven (Functional Analysis on design based data/information) -- Reduced test requirements, hierarchical models representing the UUT
- **→** Design for both integrated diagnostics and prognostic/ predictive management -- *INTEGRATED INFORMATION RESOURCES*

TECHNICAL APPROACH

- □ Design for testing, integrated diagnostics, and prognostic/predictive management (Software Tools: Diagnostician and Prognostics Framework)
 - Tie-in DT&E/OT&E with maintenance test requirement at development phase
- □ Maintenance Considerations
 - ➡ Use design based data/information to develop embedded diagnostics/prognostics, or off-line test program sets (TPS) and develop the true interactive electronic technical manuals (IETMs)
 - **▶** Develop Integrated Information Resources

TECHNICAL APPROACH (cont'ed)

- □ System Test and Evaluation
 - → Apply diagnostics and prognostics test for subsystems T&E
 - **▶** Use simulations for T&E interfaces
 - **→** Use simulations for T&E launching interfaces
 - → Automate assessment and scorekeep the DT&E/OT&E performance tests
- □ System Battle Damage Assessment (BDA) and Repair Training
 - **→** Develop electronic BDA information (EBDAI)
 - → Integrate maintenance test information with field exercises, IETMs, and EBDAI for BDA repair training

Combine DT&E and maintenance test data, diagnostic knowledge database, and BDAR information in development of an <u>integrated</u> training to ensure

efficiency,
the fielded
product
meets its
mission,
performance,
and
supportability
requirements.

Training Implications

- ✓ Training Material Can Evolve and Mature with Diagnostics and Testing
- ✓ Training is improved by more realistic loading factors on the Logistics system
- ✓Integrate Maintenance Training that Adapts to User Profile +Training then is an Integral Part of IETMs
- ✓ Training Range information imbedded into and onto Test Range information
- ✓ Training based upon Actual Maintenance
 Tasks as defined by Fault Population for
 Maintenance Test, T&E, BDAR, & WRM

RECOMMENDATIONS

White Paper call for Formation of a TIGER TEAM

- Define what and how information and technology is to be leveraged
- **→** Define the output products and requirements
- **→** Provide funds to achieve
- Roadmap goals and schedules to achieve the goals

Provide integrated birth to battlefield information that supports the processes associated with what are NOW INDIVIDUAL STOVEPIPES

Combine T&E and Training, with the Maintenance test diagnostic knowledge database to provide an <u>integrated</u> field training package for BDAR and enhance Logistics Supportability through Interoperability.

A "BREAKTHROUGH" TECHNOLOGY THAT CAN CHANGE THE FACE OF D/O **TEST EVALUATION & LOGISTICS SUPPORT** FOR COMPLEX MILITARY SYSTEMS PREDICTIVE MAINTENANCE